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AIM
The aim was to develop and validate limited sampling strategy (LSS) models to predict the area under the plasma concentration–
time curve (AUC) for metformin.

METHODS
Metformin plasma concentrations (n = 627) at 0–24 h after a single 500mg dose were used for LSS development, based on all subsets
linear regression analysis. The LSS-derived AUC(0,24 h) was compared with the parameter ‘best estimate’ obtained by non-
compartmental analysis using all plasma concentration data points. Correlation between the LSS-derived and the best estimated AUC
(0,24 h) (r2), bias and precision of the LSS estimates were quantified. The LSS models were validated in independent cohorts.

RESULTS
A two-point (3 h and 10 h) regression equation with no intercept estimated accurately the individual AUC(0,24 h) in the devel-
opment cohort: r2 = 0.927, bias (mean, 95% CI) –0.5,�2.7–1.8% and precision 6.3, 4.9–7.7%. The accuracy of the two point LSS
model was verified in study cohorts of individuals receiving single 500 or 1000 mg (r2 = –0.933–0.934) or seven 1000 mg daily
doses (r2 = 0.918), as well as using data from 16 published studies covering a wide range of metformin doses, demographics,
clinical and experimental conditions (r2 = 0.976). The LSS model reproduced previously reported results for effects of polymor-
phisms in OCT2 and MATE1 genes on AUC(0,24 h) and renal clearance of metformin.

CONCLUSIONS
The two point LSS algorithm may be used to assess the systemic exposure to metformin under diverse conditions, with reduced
costs of sampling and analysis, and saving time for both subjects and investigators.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• Metformin, themost widely prescribed drug in type 2 diabetes mellitus, shows considerable inter-individual variability in
clinical response, prompting a considerable amount of research on its pharmacokinetics.

• Metformin pharmacokinetics is usually analyzed using non-compartmental methods, which require the collection and
analysis of multiple blood samples, a costly and time-consuming procedure for patients, clinical and analytical staff.

• Evidence fromvarious therapeutic classes indicates that pharmacokinetic parameters, such as the area under the plasma concen-
tration vs. time curve (AUC), can be accurately estimated using limited sampling strategies (LSS). coupled to regression analyses.
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WHAT THIS STUDY ADDS
• Two-point (3 h and 10 h) regression equations estimated accurately the individual AUC in the 24 h following the
administration of single (500–1000 mg) or repeated doses (1000 mg) of metformin to Danish and Brazilian healthy
individuals, studied by our groups.

• The accuracy of the two point LSS model was verified using data from 16 published studies, covering a wide range of met-
formin doses, demographics, clinical and experimental conditions, including pharmacogenomic variables.

• We conclude that the two point LSS algorithm may be used to assess the systemic exposure to metformin under diverse
conditions, with reduced costs of sampling and analysis, and saving time for both subjects and investigators.

Introduction
Metformin, a biguanide derivate, is the most widely prescribed
drug to manage glucose metabolism in individuals with type 2
diabetes mellitus (T2DM), and is recommended as a first line
medication in the joint guidelines of the American Diabetes
Association and the European Association of the Study of
Diabetes [1]. The drug has a favourable safety/risk profile, and
in addition to lowering blood glucose level, metformin may
have positive effects on diabetes related endpoints, including
macrovascular andmicrovascular events [2]. Nevertheless, there
is considerable inter-individual variability in response tometfor-
min and it has been shown that its use asmonotherapymay not
provide adequate control in 15–30% T2DM patients [3, 4]. This
has prompted a considerable amount of research on metformin
pharmacokinetics, including drug-drug interaction [5] and
pharmacogenetic studies [6–8].

Metformin pharmacokinetics are usually analyzed using
non-compartmental methods, which require the collection
and analysis of multiple blood samples, a costly and time-
consuming procedure for patients, clinical and analytical
staff. Ratain et al. [9, 10] and Egorin et al. [11] were the first
to demonstrate that pharmacokinetic parameter measure-
ments could be simplified by using a technique called limited
sampling strategy (LSS). They showed that regression equa-
tions using three blood samples collected at specific times
provided accurate estimates of the area under the plasma
concentration vs. time curve (AUC) of the anticancer drugs,
vinblastine, amonafide and cyclophosphamide. The LSS
technique has been successfully applied to several other ther-
apeutic groups, such as immunosuppressants [12], antifungal
[13], antibiotics [14], antiviral [15], corticosteroids [16] and
calcium antagonists [17]. In the present study we explored
the application of LSS to assess the systemic exposure to
metformin, using the AUC in the 24 h following drug admin-
istration (AUC(0,24 h)) as the pharmacokinetic parameter.

Methods

Development of LSS models for the AUC of
metformin
Metformin plasma concentrations (n = 627) from 50 healthy,
adult Danish individuals enrolled in a previously published
study [18] were used for the development of LSS models to
estimate the AUC(0,24 h) following oral administration of a
single 500 mg dose of metformin (Orabet® Hexal, Hvidovre,
Denmark). WinNonlin 6.3 (Pharsight, Mountain View, CA,

USA) was used to perform non-compartmental analysis of
metformin plasma concentrations and linear trapezoidal
interpolation was used to determine AUC(0,24 h). The AUC
(0,24 h) thus obtained is taken as the ‘best estimate’ of the
parameter value (see below). All subsets linear regression
analysis [19] of the AUC(0,24 h) best estimates against the
metformin plasma concentration at a particular time (Ctime)
was carried out in order to develop LSS models. Computa-
tions were carried out using function leaps [20] in Splus 4.0
[21]. This analysis produced equations of the following form:
AUC(0,24 h) = Ao + A1*C1 + A2*C2. . . + An* Cn, where An are
coefficients and there is a variable number of samples. Regres-
sion equations were ranked according to the r2 criteria in or-
der to identify those that provided the best fit for 1 to 10
timed plasma samples. The LSS-predicted AUC(0,24 h) were
then compared with the AUC(0,24 h) best estimates for each
of the 50 individuals. The bias of these LSS-derived estimates
was assessed by calculating themean percentage of difference
(MD%) from the best estimates as follows: MD% = [(derived
estimate – best estimate)/best estimate]*100%. Precision was
assessed by calculating the mean absolute percentage of
difference (MAD%) as follows: MAD% = [(|derived estimate
– best estimate|)/best estimate]*100 [13, 14]. Following
suggestions of two referees who evaluated the original man-
uscript, we constructed Blant–Altman plots to visualize the
agreement between best-estimated and LSS-predicted AUC
(0,24 h)s and applied Loess models to fit smooth surfaces
to the correlation between the two AUC(0,24 h) values.

Validation of the LSS model for the AUC of
metformin
The LSS models developed for estimating the AUC(0,24 h) of
metformin were validated in various data sets by applying the
regression equations derived in the development cohort
(above) to the concentrations observed at the same respective
times, but under different experimental conditions. The AUC
(0,24 h)’s thus obtained (LSS-predicted AUC(0,24 h)) were
then compared with the best estimates of this metric. Three
data sets were used for validation, namely:

1 Two-hundred and fifty-six adult Brazilians enrolled in nine
bioequivalence trials, performed according to the guide-
lines of ANVISA, the Brazilian Health Surveillance Agency
(www.portal.anvisa.gov.br) and approved by the respective
IRBs. Each volunteer (24–34 per trial) provided written,
informed consent. The bioequivalence trials adopted an
open-label, randomized, two sequence, two period cross-
over design, in which administration of the reference
(Glifage®, Merck & Co., Rio de Janeiro, Brazil) and a test
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metformin formulation were separated by a 7 day washout
interval. The oral metformin doses were 500 mg in four
trials (113 volunteers, n = 1640 samples) and 1000 mg in
five trials (143 volunteers, n = 2037 samples). Consecutive
blood samples were collected during the 24 h following
metformin administration, the concentration of metfor-
min in plasma was determined by LC/MS/MS and a non-
compartmental model provided by WinNonlin software
was used to calculate the AUC(0,24 h) best estimates. Only
data for the reference metformin formulations (500 or
1000 mg) were used for LSS validation.

2 Nineteen healthy, adult Danish individuals enrolled in a
drug–herb interaction study between metformin and St
John’s wort [22] in which each subject received daily oral
doses of metformin for 7 days in escalating doses with a
target of 1000 mg twice daily. Details of the study protocol
are described in the published report [22]. The plasma met-
formin concentration data (n = 266) and the AUC(0,24 h) at
day 7 were used for validation of the LSS equations.

3 Metformin plasma concentrations (n = 412) were gathered
from 16 previously published studies [23–28] conducted
under a variety of experimental conditions. Scanned plots
of the published plasma concentrations vs. time curves
were used to obtain the plasma concentration data points
and to calculate the AUC(0,24 h) best estimates, by means
of the trapezoidal method.

Applying the LSS model to a pharmacogenetic
trial
The LSS model was applied to examine the association of the
OCT2 c.808G> T (rs316019) genotypes withmetformin AUC
(0,24 h), using previously published data from one of our
groups [18]. Data from 46 of the 50 individuals were available

for the LSS analyses. Four individuals were excluded due to
missing blood samples at either 3 h or 10 h. Using the
estimated AUC from the LSS model we reevaluated statistical
inference of the gene–gene interaction between OCT2 c.808
(G > T) and MATE1 g.-66 T > C on the renal clearance of
metformin.

Results

Development of limited sampling models for
AUC(0,24 h)
Figure 1A shows the plasma metformin concentration–time
curve for the single 500 mg oral dose, used to develop LSS
models for the AUC(0,24 h). Best estimates of AUC(0,24 h)
ranged from 2.9–13.8 μg l�1 h (median = 7.2 μg l�1 h). The
all-subsets regression approach used to identify the most in-
formative sampling times (Methods) showed that two point
(3 h and 10 h) LSS equations, with or without an intercept
term, provided accurate estimates of the individual AUC
(0,24 h) (Table 1). The individual AUC(0,24 h) derived from
these two point LSS equations correlated closely (r2 = 0.927,
mean bias 0.5–0.7%, mean precision 6.2–6.3%) with the
AUC(0,24 h) best estimates. Figure 1B shows a scatter plot of
the best estimated vs. the LSS-predicted AUC(0,24 h) by both
two point equations. Blant–Altman and Loess plots of these
data are shown in Supplementary Figures S1 and S2, respec-
tively. Increasing the number of sampling points to more
than two increased r2 marginally and added little to the bias
and precision of the estimates (data not shown). Based on
the statistical principle of parsimony, we settled for the two
point regression without an intercept term for validation in
different data sets.

Figure 1
A. Mean (± s.d. of the mean) concentrations of metformin in the plasma of healthy Danes, after a single 500 mg oral dose. B. Scatter plot of the
relationship between the individual best estimated AUC(0,24 h) and the corresponding AUC(0,24 h) derived from the two point (3 h, 10 h) LSS
models, with (closed squares) or without (open squares) intercept. The LSS equations are shown in Table 1. The continuous line is the identity line
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Validation of limited sampling models for AUC
(0,24 h)
In the first validation exercise, the two point LSS equation
developed in the Danish cohort was applied to data from
113 healthy Brazilians enrolled in bioequivalence trials, in
which they were given a single 500 mg dose of the reference
metformin formulation. Best estimates of AUC(0,24 h) in this
set ranged from 1.9–10.3 μg l�1 h (median = 4.8 μg l–1 h). The
results, shown in Table 1, Figure 2A and Supplementary
Figures S3 and S4 indicate that the two point LSS equation
provided accurate estimates of the AUC(0,24 h) (r2 = 0.934,

bias 3.9%, precision 8.9%). A similar performance
(r2 = 0.933, bias 1.0%, precision, 8.4%, Table 1) was obtained
when the two point LSS model was applied to another set of
137 healthy Brazilians, who had been given a single
1000 mg dose of the reference metformin formulation in bio-
equivalence trials. The best estimates of AUC(0,24 h) in this
set ranged from 3.2–19.8 μg l–1 h (median 8.6 μg l–1 h). A scat-
ter plot of the best estimated vs. LSS-derived AUC(0,24 h) is
shown in Figure 2B. Blant–Altman and Loess plots of these
data are presented in Supplementary Figures 5 and 6,
respectively.

Table 1
r2, bias and precision of the most informative linear equations for two sample times (3 h, 10 h) to estimate the AUC(0,24 h) of metformin

Cohorts LSS equations r2 MD (%) mean (95% CI) MAD (%) mean (95% CI)

Development cohort

Healthy Danes, single dose, 500 mg 4.779*C3 + 13.174*C10 0.927 �0.5 (�2.7, 1.8) 6.3 (4.9, 7.7)

0.543 + 4.454*C3 + 12.273*C10 0.927 0.7 (�1.4, 2.8) 6.2 (4.9, 7.5)

Validation cohorts

Healthy Brazilians, single dose, 500 mg 4.779*C3 + 13.174*C10 0.934 3.9 (2.2, 5.5) 7.9 (6.9, 8.9)

Healthy Brazilians, single dose, 1000 mg 4.779*C3 + 13.174*C10 0.933 1.0 (�0.3, 2.3) 7.2 (6.3, 8.1)

Healthy Danes, repeated doses, 1000 mg 4.779*C3 + 13.174*C10 0.918 �4.4 (�7.4, 1.5) 6.8 (5.2, 8.5)

Published data 4.779*C3 + 13.174*C10 0.976 �1.0 (�2.7, 0.7) 4.3 (3.3, 5.3)

r2, correlation coefficient between LSS-predicted and best-estimated AUC0-24h; MD, bias; MAD, precision of the LSS-predicted estimates. Published
data: [23–38]

Figure 2
Scatter plots of the relationship between the individual best estimated AUC0-24h and the corresponding AUC(0,24 h) derived from the two oint
(3 h, 10 h, no intercept; Table 1) LSS model in healthy Brazilians, after single 500 mg (A) or 1000 mg (B) metformin doses. The continuous line
is the identity line
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As a second validation approach we applied the two point
LSS model to data obtained after seven daily administrations
of metformin to healthy Danish individuals, and obtained
good estimates of themetformin AUC(0,24 h) (r2 = 0.918, bias
�0.44%, precision 6.8%, Table 1). These results suggest that
the two point LSS model is capable of providing accurate
estimates of metformin AUC(0,24 h) during pharmacokinetic
steady-state conditions and, therefore, may be useful for
estimation of the systemic drug exposure in patients under
chronic treatment with metformin.

The LSSmodel was further validated using data from 16 pre-
viously published studies [23–38]. The results (Table 1, Figure 3,
Supplementary Figures S7 and S8) indicated that the AUC
(0,24 h) predicted by the two point LSS model was in excellent
agreement (r2 = 0.976, bias �1.0%, precision 4.3%) with the
corresponding AUC(0,24 h) best estimates, over a wide range
(3.8–22.4 μg h l�1) of AUC(0,24 h) values and under a variety
of demographic, experimental and clinical conditions. These
include male and female gender, various ethnicities (white
European and North American, African, Hispanic/Latin, Native
and Pacific Islander from United States, Mexican, Chinese,

Korean and Japanese) healthy volunteers and patients with
pre-existing diabetes, gestational diabetes, polycystic ovarian
syndrome or post-gastric bypass surgery, as well as different
genotypes at various loci in drug transporter genes. Different
metformin formulations (immediate or extended release
tablets and liquid formulations), administration regimens
(single, two or repeated doses) and a wide range of doses
(250–3000 mg day–1) were used in these studies.

Finally, we explored the potential utility of the LSS in
pharmacogenetic studies, using published data from
Christensen et al. [18] on the influence of polymorphisms in
theOCT2 andMATE1 genes onmetformin pharmacokinetics.
As shown in Table 2, almost similar P values were obtained for
the association between OCT2 c.808G > T genotypes and the
metformin AUC(0,24 h) when the AUC(0,24 h) was esti-
mated using all data points (as reported by Christensen et al.
[18], P = 0.49) or the LSS model (P = 0.42). Furthermore, using
the LSS-derived AUC(0,24 h) for calculating the renal clear-
ance of metformin showed the same trends as derived by
Christensen et al. [18] for the gene–gene interaction between
OCT2 c.808 (G> T) andMATE1 g.-66 T>C, based on the best-
estimated AUC(0,24 h) (Table 3).

Using the LSS model to predict the AUC
extrapolated to infinity (AUC(0,∞))
The AUC(0,24 h) of metformin in the development cohort
represented 96.8% (95% CI 96.3, 97.4) of the AUC(0,∞) ob-
tained by extrapolation, based on the terminal elimination
rate constant. Accordingly, we anticipated that the LSS model
validated for the AUC(0,24 h) would provide accurate esti-
mates of the AUC(0,∞). This was verified in the development
cohort as well as in the Brazilian cohorts treated with 500 or
1000 mg metformin (Table 4).

Discussion
In the present study we developed and validated limited
sampling models that accurately predict the systemic expo-
sure to metformin, assessed by the pharmacokinetic param-
eter, AUC(0,24 h). LSS development, based on data from
healthy Danish adults receiving a single 500 mg oral dose,
generated two-point (3 h and 10 h) models, with and with-
out an intercept term, which predicted the individual AUC
(0,24 h) with nearly identical accuracy. The statistical princi-
ple of parsimony advises in favour of models with fewer

Figure 3
Scatter plot of the relationship between the best estimated AUC
(0,24 h) for metformin in 16 previously published studies [23–38]
and the corresponding AUC(0,24 h) derived from the two point
LSS model (3 h, 10 h, no intercept; Table 1). The best estimated
and the LSS-derived AUC(0,24 h)s were obtained as described in
Methods. Each study is identified by a distinct symbol. The continu-
ous line is the identity line

Table 2
Impact of OCT2 c.808 (G > T) on the AUC(0,24 h) of metformin

OCT2 c.808 (G > T) genotype

AUC(0,24 h) (μg l�1 h) GG (n = 24) GT (n = 18) TT (n = 4) ANOVA P-value

LSS estimated 7.58 (2.9, 11.33) 7.52 (3.79, 12.91) 5.80 (4.82, 6.67) 0.42

Best estimated 7.39 (3.04, 10.55) 7.38 (3.99, 13.48) 5.87 (5.13, 7.01) 0.49

Data from Christensen et al. [18] for 46 healthy subjects using a single dose of 500 mg metformin. Data presented as medians (25th
– 75th percen-

tiles). ANOVA P-values for the association of the OCT2 c.808(G > T) genotype with metformin AUC(0,24 h) predicted by the two points LSS AUC
(0,24 h) = 4.779*C3 + 13.174*C10 or calculated using all plasma concentration data points (best estimated).
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parameters, and the two-point model without intercept was
chosen for validation in independent cohorts. These
cohorts comprised male and female individuals of various
ethnicities, healthy volunteers, patients with diabetes, poly-
cystic ovarian syndrome and post-gastric bypass surgery, a
wide range of metformin doses (250–3000 mg day–1) and
various formulations. Collectively, the validation tests
confirmed the accuracy and precision of the AUC(0,24 h)
estimates provided by the LSS algorithm based on two
plasma concentrations (3 h and 10 h after oral drug intake)
with no intercept. This LSS model was also shown to predict
accurately the AUC(0,∞) in the development cohort as well
in the validation cohorts of healthy Brazilians administered
500 or 1000 mg doses of metformin.

We suggest that the validated LSS algorithm is appropriate
for predicting the systemic exposure to metformin after sin-
gle or chronic administration and may be used to replace
non-compartmental analysis in pharmacokinetic studies,

including pharmacogenetic trials. Accordingly, we showed
that the two point LSS equation led to the same conclusions,
as those derived from traditional non-compartmental
methods [18], regarding both the effect of a polymorphism
in the OCT2 transporter (OCT2 c.808G > C) on metformin
AUC(0,24 h) and the influence of gene-gene interaction be-
tween OCT2 c.808 (G > T) and MATE1 g.-66 T > C on the re-
nal clearance of metformin.

Although plasma concentrations of metformin are not
monitored in clinical practice, this may be useful, particularly
in patients with renal impairement, in order to ensure that a
safe dose is being administered [39]. Graham et al. suggested
that the average concentration of metformin in plasma at
steady-state over a dosage interval (Cav,ss) provides the best
correlates with the clinical effects of metformin. Since Cav,ss

may be derived directly from the AUC for the respective
dosage interval, our validated LSS model may prove useful
for studies exploring the tentative recommendation of a

Table 3
Interaction of OCT2 c.808 (G > T) and MATE1 c.-66 (T > C) on the renal clearance of metformin

OCT2 c.808 (G > T)

MATE1 6.-66 T > C GG GT TT P

Mean CLrenal (l h
–1) using best-estimated AUC

TT 27.9 (24.2, 32.2; 7) 32.4 (27.8, 37.8; 6) 44.8 (34.3, 58.4; 2) 0.006

TC 30.8 (27.5, 34.5; 11) 28.0 (24.3, 32.3; 7) 25.5 (19.5, 33.2; 2) 0.202

CC 33.1 (28.0, 39.1; 5) 32.4 (27.4, 38.4; 5) — 0.275

P 0.148 0.070 0.012

Mean CLrenal (l h
–1) using LSS-derived

TT 27.5 (23.5, 32.3; 7) 32.5 (27.4, 38.6;6) 45.4 (33.8, 61.1; 2) 0.013

TC 31.9 (28.15, 36.2; 11) 29.5 (25.1, 34.5; 7) 27.9 (20.7, 37.5; 2) 0.516

CC 32.8 (27.2, 39.6; 5) 31.8 (26.4, 38.4; 5) — 0.635

P 0.158 0.424 0.090

Data from Christensen et al. [18] for 45 healthy subjects using a single dose of 500 mg metformin. Data are presented as geometric means (95% CI;
number of individuals). CLrenal renal clearance. P values refer to parametric multiple regression analysis, adjusted for the individual glomerular fil-
tration rates, for the interaction of the OCT2 c.808(G > T) and MATE1 g.-66 T > C genotypes on metformin CLrenal calculated using the LSS-derived
AUC (AUC(0,24 h) = 4.779*C3 + 13.174*C10) or using all plasma concentration data points, as reported by Christensen et al. [18].

Table 4
r2, bias and precision of the LSS model to the predict the AUC(0,∞) of metformin

Cohorts r2 MD (%) mean (95% CI) MAD (%) mean (95% CI)

Development cohort

Healthy Danes, single dose, 500 mg 0.919 �3.7 (�5.9, 1.1) 7.3 (5.7, 8.8)

Validation cohorts

Healthy Brazilians, single dose, 500 mg 0.878 0.4 (�6.0, 6.8) 8.7 (2.4, 15.0)

Healthy Brazilians, single dose, 1000 mg 0.921 �1.0 (�7.9, 5.9) 7.8 (1.8, 13.8)

LSS model equation: AUC(0,24 h) = 4.779*C3 + 13.174*C10. r
2 correlation coefficient between LSS-predicted AUC(0,24 h) and the extrapolated AUC

(0,∞); MD bias; MAD precision of the LSS estimates.
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maximal value of Cav,ss of 2.5 mg l–1, to prevent toxicity due
to lactic acidosis [39]. In this regard, the lack of validation of
the LSS model in patients with moderate or severe renal
impairment, who are at higher risk for metformin toxicity,
may be seen as a limitation of our study.

To our knowledge, only one published study has previously
exploredmetformin pharmacokinetic parameters, using the LSS
approach. Chen et al. [25] applied the procedures described by
Suarez-Kurtz et al. [13, 14] to a bioequivalence trial in a cohort
of 20 healthy volunteers and derived a two point (4 h and
10 h) equation with intercept, which provided good estimates
of the AUC(0,24 h) (r2 = 0.94) for the 1000 mg dose of the met-
formin reference formulation. This LSS model was validated
using data from the same cohort and, not surprisingly, was
found accurate. When applied to the cohorts of our study
treated with single metformin doses (Supplementary Table S1),
themodel developed byChen et al. [25] compared unfavourably
with our two point LSS algorithm (Table 1) regarding bias and
precision and, to a smaller extent, r2. For example, in Brazilians
receiving a single 1000 mg dose, the bias and precision of the
LSS estimates were 1.0 (�0.3–3.3), and 7.2 (6.3–8.1) for our
two point algorithm with no intercept, compared with 7.9
(6.5–9.3) and 10.5 (9.5–11.5) for the algorithm described by
Chen et al. [25].

In conclusion, we show that two point LSS models allow
accurate estimation of metformin’s AUC(0,24 h) under a
wide variety of demographical, clinical and experimental
conditions, metformin doses, formulations and frequency
of administration. The small number (n = 2) of samples
required for the model represent considerable reduction of
cost of analysis and save time both for subjects in trials
and investigators. Using the LSS model we reproduced the
results reported by Christensen et al. [18] for the effects of
polymorphisms in the OCT2 and MATE1 genes on AUC
(0,24 h) and renal clearance of metformin. This suggests a
potential usefulness of our LSS models in pharmacogenetic
trials and we look forward to additional analyses, retrospec-
tive or prospective, to verify this notion.
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Figure S1 Bland–Altman plot of the difference between the
best-estimated and LSS-derived AUC(0,24 h)’s of metformin,
against the best-estimated AUC(0,24 h), in the development
cohort. The LSS estimates were obtained using the two point
LSS models with or without an intercept term, presented in
the text and Table 1. Black circles and continuous lines refer
to the LSS model without intercept; open circles and dashed
lines refer to the LSS model with intercept. The horizontal
lines are drawn at the mean difference and at + 1.96 sds of
the mean difference between best-estimated and LSS-derived
AUC(0,24 h) of metformin
Figure S2 Loess smooth curve fitting to the correlation be-
tween the best-estimated and LSS-predicted AUC(0,24 h)’s
of metformin in the development cohort. The LSS estimates
were obtained using the twopoint LSS models with or with-
out an intercept term, presented in the text and Table 1. Black
circles and thick continuous line refer to the LSS model with-
out intercept, open circles and dashed line refer to the LSS
model with intercept. The thin straight line represents the
identity line
Figure S3 Bland–Altman plot of the difference between best-
estimated and LSS-derived AUC(0,24 h) of metformin,
against the best-estimated AUC(0,24 h), in the validation co-
hort of healthy Brazilians receiving a single 500 mg dose of
metformin. The LSS estimates were obtained using the 2-
point LSS model without intercept. Each individual is repre-
sented by a black circle. The horizontal lines are drawn at
the mean difference and at + 1.96 sds of the mean difference
between best-estimated and LSS-derived AUC(0,24 h) of
metformin
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Figure S4 Loess smooth curve fitting to the correlation be-
tween best-estimated and LSS-predicted AUC(0,24 h) of met-
formin in the validation cohort of healthy Brazilians
receiving a single 500 mg dose of metformin. The LSS esti-
mates were obtained using the two point LSS model without
intercept. Each individual is represented by a black circle.
The thin straight line represents the identity line
Figure S5 Bland–Altman plot of the difference between best-
estimated and LSS-derived AUC(0,24 h) of metformin,
against the best-estimated AUC(0,24 h), in the validation co-
hort of healthy Brazilians receiving a single 1,000 mg dose of
metformin. The LSS estimates were obtained using the two
point LSS model without intercept. Each individual is repre-
sented by a black circle. The horizontal lines are drawn at
the mean difference and at + 1.96 sds of the mean difference
between best-estimated and LSS-derived AUC(0,24 h) of
metformin
Figure S6 Loess smooth curve fitting to the correlation be-
tween best-estimated and LSS-predicted AUC(0,24 h) of met-
formin in the validation cohort of healthy Brazilians
receiving a single 1000 mg dose of metformin. The LSS

estimates were obtained using the two point LSS model with-
out intercept. Each individual is represented by a black circle.
The thin straight line represents the identity line
Figure S7 Bland–Altman plot of the difference between
best-estimated and LSS-derived AUC(0,24 h) of metformin,
against the best-estimated AUC(0,24 h), in 16 previously
published studies . The LSS estimates were obtained using
the two point LSS model without intercept. Each study is
represented by a black circle. The horizontal lines are drawn
at the mean difference and at + 1.96 sds of the mean differ-
ence between best-estimated and LSS-derived AUC(0,24 h)
of metformin
Figure S8 Loess smooth curve fitting to the correlation be-
tween best-estimated and LSS-predicted AUC(0,24 h) of met-
formin in 16 previously published studies . The LSS estimates
were obtained using the two point LSS model without inter-
cept. Each study is represented by a black circle. The thin
straight line represents the identity line
Table S1 Validation of the LSS algorithm described by Chen
et al. [25]
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